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Summary. We deal with two diffusion problems: Space-integrated conserved 
entities characterizing very fast- diffusion- controlled reactions, such as time 
lags, etc. are universal. They are given by relationships which do not reflect the 
failure of the mean field hydrodynamic equations. We present another applica- 
tion which does not reflect this failure, for determining the surface flux via a 
diffusion controlled reaction producing a colored product. Another anomalous 
diffusion process we considered is transport through cellular materials whose cell 
sizes are highty nonuniform. We have analyzed the effects of extreme nonunifor- 
mity by considering fractal-like models of cellular solids. The diffusion current 
through these models can exhibit anomalous time-dependencies which are not 
predicted by the diffusion equation. In particular, it is shown that the initial 
diffusion current can be characterized by a power-law dependence on the time. 
Furthermore, the exponent of the power law is given in terms of the distribution 
of cell sizes in the fractal-like cellular solid. 

Key words: Diffusion-reaction - Transport - Time lag - Fractal foams - Low 
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Recently our interests have been engaged in two areas of diffusion in which the 
honoree, Steven Prager, has made notable contributions: (a) diffusion-controlled 
reactions, and (b) diffusion in inhomogeneous media. 

Diffusion limited, very fast reactions have attracted considerable interest in 
recent years [1-3]. In very fast reactions, diffusion dominates the dynamics and 
the large concentration fluctuations resulting from the tendency of the particles 
to react mostly with their immediate neighbors. These slower kinetics are in 
general no longer described by the mean field hydrodynamic equations with large 
deviations- particularly for lower than three-dimensional diffusion. A recent 
investigation based on numerical simulation of one dimensional diffusion limited 
permeation in a reacting membrane of species 1, 2 reacting according to: 

1 + 2 ~ inert 

showed though, that when orte focused only a gross variable such as the total 
flow up to time t, Q(t), out of the membrane, the hydrodynamic equations gave 
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an excellent approximation even in the diffusion-limited regime [4]. Denoting by 
u i ( x ,  t) the concentration of species i = 1, 2 in the membrane (and taking 2 to be 
immobile or essentially attached to the membrane, i.e., D 2 = 0) the mean field, 
hydrodynamic equations are: 

in 0 < x < l with 

and 

ÜU 1/at = D1 a 2 U l / a X  2 - -  kul U 2 

au2/a t  = - k u  1 u2 (1)  

U l ( x ,  O) = U 1 (X), U 2(x,  O) = V 2(X) (2) 

ul(0, t) = Co, ul( l ,  t) - c 1 (C0 > Cl)- (3) 

Quite independently of  whether the mean field equations of Eq. (1) apply, the 
difference in the number of particles of type 1 over that of type 2 can only 
change because of the flux of type 1 particles in and out of the membrane. 
Because of  this conservation theorem the steady stare flux Js out of  the membrane 
at x = l, Jx = - D l  (au l /aX)x  = » The time-lag T is the horizontal asymptote to the 
time axis (see Fig. 1) which characterizes the lang time behavior of  Q(t): 

Q(t )  ,.~ ( t  - T ) j  s as t ~ ~ (4) 

is still given exactly by the values obtained by integrating Eqs. (1)- (3) :  

j« = D l  (Co - -  Cl ) / l ,  (5) 

and 

f0f~ T = d x  dz[co + (cl - Co)(z/l  + v2(z) - vl ( z ) ) ] /Dl (co  - c l ) .  (6) 

These quantities are measurable and universal, i.e., they depend on the initial 
and boundary conditions but not on any details of the reaction between particles 
1 and 2, and they reflect only the validity of  the equation for the difference 
(u ,  - u~) :  

a(U 1 - -  U 2 ) / a •  ~- D 1 a2Ul / aX 2. (7 )  

Q(t) 

i fJJJJJJJJJJJJJ~ 
T t 2 x 

Fig. 1. The total flow per unit area through the membrane, Q(t), as a function of  the time t and its 
linear asymptote which intersects the time axis at the time-lag T 

Fig. 2. Colorimetric measurement of  the flux F in a membrane of known area and thickness, L The 
bounding surface at x = l is impermeable to all species and that at x = 0 to the colored species. Light 
passes through the sample as indicated by the arrows 
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This holds even if Eq. (1) does not. The simulations of  Ref. [4] confirm these 
results over the whole, large range of  k values whieh was employed, as can be 
seen from Figs. (1 ) - (3 )  of Ref. [4]. 

One ean use a diffusion controlled reaction to study the surface fluxes, F(t), 
of a reagent of concentration w, into a fixed area of  different membranes. The 
fixed thickness of the membrane is l, and it contains a small amount, but in 
sufficient excess, of other reagents to react with w to form a new species, of  
concentration c, which ean be identified by its color. This reaction is quasi-first 
order [5]. The rate constant k~ of  this reaction can be separately determined. The 
colored species is monitored colorimetrically perpendieularly to the direction of 
diffusion (cf. Fig. 2). The total color developed up to time t, is directly 
proportional to: 

fo' ó( t )  = c(x, t) dx, (8) 

and q~ need only be measured to obtain the desired fluxes: 

F(t) = - [Dw(•w /•X)x = 0]. (9) 

The mean field diffusional boundary value problem is: 

with 

( aw/a0  = (a /ax)[Dw(aW /oX)] - kl  w, 

(de/&) = (O /ax)[D~(Oc /ôx)] - k I w, 

(10) 

(11) 

[Dc(8c /ôx)]x =, = [Dw( 8W /8X)L =, = 0, (12) 

[Dc(8c/8x)]x = o = 0 (13) 

and the upper surface is maintained at fixed coneentration: 

w(0, t) = Wo, a constant, (14) 

and initially the membrane is free of reagent: 

w(x, O) = c(x, O) -- O. (15) 

Even if these hydrodynamic equations do not apply, their space integrated 
versions reflect the eonservation of species except for what enters at x = 0. Thus 
integrating Eqs. (10) and (11) over x from 0 to l and eliminating d(a/dt one finds 
the desired flux: 

F(t) = d(a/dt + 1/k, (d20/dt2). (16) 

Thus by differentiating the measured q~(t), knowing kl ,  F(t) is determined. 
Transport  through foams and fractaMike cellular solids also can deviate 

from what is expected from Fick's and Fourier's law of transport of mass and 
heat in a homogeneous medium. We have considered the nature of  gas diffusion 
through rigid polyurethane foams blown by, say, water vapor rather than 
chloro-fluorocarbons. Such foams have a highly non-uniform distribution of cell 
sizes. Foams belong to the upper linear dimension limits of  a class of materials 
with certain anomalous physical properties called "low density microcellular 
materials" (LDMM),  which have been reeently reviewed [6]. We studied gas 
diffusion through one- and three-dimensional, regular fractal models of these 
foams [7]. 
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In considering this diffusion, we assume gas concentrations are sufficiently 
small that nonlinear effects are not important. This means the gas flowing 
through a cell boundary is proportional to the difference in gas concentrations 
across the boundary. It also means the structural integrity of  the foam is not 
compromised: gas pressure differences are assumed to be so small that no cell 
walls are bent or broken. 

Our previous results can be summarized as follows: 

(1) Diffusion through fractal-like foams cannot be accurately described by a 
diffusion equation. 

(2) The characteristics of  the diffusion depend sensitively on both the distribu- 
tion of the cell sizes, and on the wall thicknesses which separate the cells. 

(3) If  the surface of  an initially empty foam is brought into contact with a 
gas at a time t = 0, the transient current surge has an anomalous time depen- 
dence. In many cases, the time derivative of this current diverges as t ~ 0 ,  
and then decays like t -~, where the value of  « depends on the structure of the 
foam. 

(4) The long-time diffusion characteristics of the diffusion in foams are also 
anomalous, and in some cases the rate at which gas escapes from the foam can 
be very slow. 

Here we present a simple illustration of the anomalous transient time 
dependence of the transient gas diffusion into (or out of) a fractal-like foam in 
which all cell walls are assumed to have the same thickness. Our earlier work was 
based on a specific fractal model (the Sierpinski gasket), and considered a 
systematic variation in cell-wall thicknesses. The results derived hefe are more 
general in the sense that we obtain the anomalous transient current surge using 
only the distribution of cell sizes which lie at the foam surface. We characterize 
this distribution by N(v), where v is the cell volume. 

For  sufficiently short times, gas diffusion does not penetrate deeply into 
the foam, so the transient current involves primarily those foam cells which make 
up the surface. As the cells fill with gas, the current into the /th cell is of  the 
form: 

Ji(t) ~ aal exp[ -6(Tiait /vi)]  for small t, (17) 

where the index i labels the cells bordering the surface, vi is the cell volume, a; is 
the cell area on the foam surface, and 7i is a number of order unity. This 
equation simply notes that the initial current is proportional to the cell area 
exposed to the gas, but the current decreases in time. This time decrease is 
associated with the filling of the cell. The rate at which gas concentration in the 
cell increases is inversely proportional to the cell volume, and linearly related to 
the cell area. The extra factor 7i is inserted because the filling rate also depends 
on the rate at which gas "leaks" out into other cells deeper in the foam. This 
extra current is also proportional to a cell area, so the correction has the same 
characteristic dependence on area and volume. In other words, if the ~~ for cells 
in a narrow volume range were averaged, to give 7(c), this average should not 
vary significantly with the v. 

The total current into the foam is: 

j ( t )  -- ~ J~ (t). (18) 
i 
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The sum can be simplified by assuming that, on average, cell areas are propor- 
tional to cell volumes to the 2/3 power, and the 7i are independent of  volume: 

ai ,., (v i ) 2/3 and ~'i ~ 7. (19) 

Then 
( '  

J(t) .~ J N(v)v 2/3 exp[ - (Ct/v 1/3)] dr, (20) 

where C is a constant. This integral is finite for all t, since at t = 0 the integral 
is proportional to the surface area of the foam, which is finite. However, the time 
derivative of the current: 

J(t) , .  f N(v)vl/3 exp[-(Ct/vl/3)]  dv (21) (d/dt) 

is not necessarily finite. If the foam is fractal-like, with cells of  arbitrarily small 
size, then: 

f; (d/dt) J(O) ~ N(v)v 1/3 dv (22) 

is proportional to the average radius of  a ce11 at the surface, and this quantity 
may be divergent. For  example, in the Sierpinski gasket a smoothed distribution 
fhnction of the cell sizes is: 

N(v)s ~ (l/v) B with fl = 1 + 1n(3)/3 ln(2), (23) 

and this gives a divergent time derivative for J(t) as t-~ 0. 
When N(v) has the power-law form as described above, the transient current 

derivative can be evaluated. Setting x = C(1/v)m/3: 

(d/dO J(t) ~ x(3~- 5) e x p ( - x t )  dx, (24) 

and letting y = xt, so that the integral can be written as a power of t times a 
dimensionless constant gives: 

(d/dt) J(t) -~ ( 1/t) (3~ - 4) (25) 

for the case of  the Sierpinski-gasket type foam, the result: 

(d/dt) J(t) ,~ (1/t) « with ~ = (ln(3/2)/ln(2)) (26) 

agrees with the earlier established result. 
It is worth noting that gas diffusion is only one of many transport properties 

that one might consider in fractal-like cellular solids. Heat conduction, for 
example, is technologically important and theoretically challenging. Heat-trans- 
port takes place through convection within cells, radiation across cells, and 
conduction along the cell-wall and cell-edge network. Which heat transport 
mechanism is dominant depends on the physical character of the foam and the 
material contained in the cells. If the cell walls form the primary barrier to heat 
conduction, our treatments of diffusion could be directly applicable. On the 
other hand, if the cell wall material is a relatively good heat conductor, the 
transport is more directly related to the diffusion on fractals which was reviewed 
by Havlin and Ben-Avraham [8]. 
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